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ABSTRACT: We couple fermion fields in the adjoint representation (gluinos) to the SU(2)
gauge field of unit charge calorons defined on R3 x S;. We compute corresponding zero-
modes of the Dirac equation. These are relevant in semiclassical studies of N =1 Super-
symmetric Yang-Mills theory. Our formulas, show that, up to a term proportional to the
vector potential, the modes can be constructed by different linear combinations of two
contributions adding up to the total caloron field strength.
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1. Introduction

In recent years a deep link between monopoles and instantons has been established at
finite temperature []-[f]. It was for long known that the finite temperature instanton,
the Harrington-Shepard caloron [fj], becomes for large scale parameter a BPS monopole
[d. This happens when the value of the constant Polyakov loop at infinity, the holon-
omy, approaches unity. The surprise came with the discovery that non-trivial holonomy
calorons when squeezed in the time direction reveal to be composed of N, for SU(N), BPS
monopoles. N — 1 of these constituent monopoles are massless for the HS caloron, but
in general all of them get non-zero masses with values related to the eigenvalues of the
Polyakov loop at infinity. The idea of the composite nature of instantons, with instanton
quarks [§] or merons [[] as constituents, has been on the basis of several semiclassical pro-
posals to address the confinement problem in QCD. Isolated fractional instantons (twisted
instantons) [[L0] can be obtained by using tori with twisted boundary conditions [[L]]. By
replicating the tori one can obtain classical configurations in a periodic box, where the
action density is clustered into lumps of 1/N of topological charge. These structures were
observed in lattice generated ensembles at zero temperature and were argued to be rele-
vant for QCD confinement [[[J]. Non-trivial holonomy calorons also exhibit explicitly this
composite nature as far as the separation between constituents stays larger that their size.
Otherwise they merge in an undissociated instanton. Triggered by this result, quite a num-
ber of more recent lattice analysis have identified the presence of constituent monopoles
at temperatures below but close to the deconfinement phase transition in Monte-Carlo



generated configurations [[[d, [[4]. Exact results on the quantum weights of calorons also
point in this direction [[lJ]. Although the possible relevance of the instanton-monopole link
for QCD dynamics is still an open issue, constituent monopoles have already shown their
usefulness in a different context, in particular for calculations of the gluino condensate in
4D N = 1 supersymmetric Yang-Mills theory [id, [[7].

The existence of an analytic expression for the non-trivial holonomy calorons allowed a
subsequent analytic calculation of the zero-modes of the Dirac equation, in the fundamental
representation, in this background field [@, E] For large constituent separation the modes
are entirely supported on just one of the monopoles, jumping from one to other as we change
the periodicity condition in the time-like direction imposed on the solution. This knowledge
has proven useful in interpreting the results of several lattice studies which employ low-
lying eigenstates of the Dirac operator to trace topological structures present in gauge field
configuration ensembles [13, ROJ-[29].

The present paper is devoted to the derivation of the analytic expression and proper-
ties of the zero-modes of the Dirac equation in the adjoint representation for Q=1 SU(2)
calorons. These are relevant objects in the study of the semiclassical behaviour of 4D N = 1
supersymmetric Yang-Mills theory compactified in R? x S'. They are directly related to
estimates of the gluino-condensate [2J]. By now this has been studied [[Ld, [[7] only in the
limit of large constituent separation, in which the SU(2) caloron degenerates into two BPS
monopoles. Having the exact expression for the four SU(2) gluino zero modes, one is now
in the position to compute explicitly the two point correlator of gluino condensates on
the background of non-trivial holonomy calorons. This calculation would be essential in
clarifying the subtle distinction between strong and weak coupling determinations of the
condensate [L7].

Our work is also useful within the previously mentioned spirit of using modes of the
Dirac equation as probes of gauge field structure, an approach that has become very popu-
lar (see for instance [B4]- [B7]) since the discovery of lattice Dirac operators ] that possess
exact index theorems. The usefulness of adjoint modes in this respect has been recently ad-
vocated [B9]. The idea is based upon the so called supersymmetric modes, having densities
that match the action density profile but are less sensitive to ultraviolet fluctuations.

The paper is organised as follows. In section P| we describe the general proper-
ties of adjoint zero-modes, such as their occurrence in pairs, related by Euclidean CP
transformations. Then, we give the main formula for the modes within the ADHM for-
mulation, and apply it to the @ = 1 SU(2) caloron case. This provides two pairs of
zero-modes. Onme pair is given by the supersymmetric zero modes (also referred to as
super-translational), which are proportional to the gauge field strength itself. The re-
maining pair of adjoint zero modes (the counterparts of the super-conformal adjoint zero
modes for the ordinary instanton [B(]) is studied. In addition to the analytical expres-
sion (details of its derivation are given in the appendix), we display its density profile
in some representative cases. In section f] we show how the solutions behave in certain
limits and how they interpolate between modes of BPS monopoles and those of instan-
tons. We end up with a summary of the results and a list of possible extensions and
applications.



2. Formalism

The adjoint zero modes V¢ (z) are solutions of the Euclidean 4-dimensional massless co-
variant Dirac equation in the adjoint representation of the gauge group:

DY =0 (2.1)

In this paper we will analyse the simplest case given by group SU(2). Then the colour
index a takes the values 1, 2,3, while the spinorial index « takes four values. Action by
~5 maps zero-modes into other ones. It is convenient then to combine zero modes into
eigenstates of 75 with eigenvalue +1, known as left and right-handed modes respectively.
In Weyl’s representation of the Dirac matrices, the left and right handed modes reduce to
two-component spinors 14 satisfying

Dyp_ =0 (2.2)
Dy =0 (2.3)

where D = o,D, and D= GuDy. The Weyl matrices are given by o, = (I, —iT), in terms
of the Pauli matrices 7; (the matrix @, is the hermitian conjugate of ¢,). If the gauge field
is self-dual, then eq. (R.2) implies
D,y =0 (2.4)
for all 4. This can easily be shown to imply that the gauge-invariant density |¢_ ()|? must
be constant (x-independent). For non-compact space-times these are non-normalizable
solutions.
Focusing now on left-handed zero modes (solutions of eq. (R.3)) we point out that the
space of solutions is always even-dimensional. This follows from euclidean CP invariance

mapping one solution into other

Py — P = —imp)} (2.5)

In the previous formula 1/11 stands for the complex conjugate spinor and the matrix 79 acts
on the 2-spinor indices. Furthermore, for self-dual gauge fields one can establish a one to
one correspondence between self-dual deformations dAj, of the gauge field and left-handed
zero modes. Given a deformation, one must first transform it to the background Lorentz
gauge

D, 6A, =0 (2.6)

and then one can show that
Yy =0Au0,V (2.7)

is a zero mode for any constant 2-spinor V.

If there are isommetries of the problem which do not leave the solution invariant,
the corresponding deformations are associated to specific zero-modes. In particular, the
super-symmetric zero-modes arising for 6A,, = F),0, are associated with translation symme-
try. In general, the space of self-dual connections is continuous and can be parameterised



in terms of a set of real parameters (moduli). Variations with respect to these moduli
parameters(tangent vectors) give rise to adjoint zero-modes.

Self-dual gauge fields with topological charge @ on the sphere S; or on R* (with
finite action) can be constructed by an algebraic procedure known as the ADHM con-
struction [Bl]. The fields are written in terms of ¢, a Q dimensional column vector of
quaternions, and g, a @ x Q matrix of quaternions satisfying certain conditions, to be
specified later. In what follows, we will identify quaternions with the space of two by two
matrices which are real linear combinations of the Weyl matrices &,. In particular, one
can form the quaternion # = x,0, and its adjoint Z = z,0,,. The self-duality condition
amounts to the requirement that the matrix R:

R=qoq¢ + A —2)(A-2) (2.8)

is real and invertible.

The self-dual deformations are then associated with variations of the ADHM data g and
A [BY. Using the previously mentioned relation between adjoint modes and deformations,
one obtains the formula for the modes in terms of variations of the parameters d¢ and SA:

SA, = ;(5(1* — w6 A)5"dw + hec. (2.9)
where we have introduced the x-dependent vectors of quaternions u and w defined by the
relations

w=R1q (2.10)
and
u=F(A-i)w (2.11)

where F' = 1+ ufu is a real function. The symbol 8 in eq. (.9) stands for the contraction
0oy

The condition that the variation §A4,, given in eq. (R.9) satisfies the required covariant
background gauge condition is

Re (Ef §A — AT A+ q(5g)" — (5q)qT> =0 (2.12)

where Re stands for the real part of the quaternion. This condition will be seen to hold
for our formulas. Its interpretation will also become more clear later.

Now we will proceed to particularise to the case of the Q=1 caloron. This is a self-
dual configuration in R® x S;. At infinity the time-like Polyakov loop (the holonomy) is
non-trivial. This is determined by the parameter d; such that the trace of the Polyakov
loop at spatial infinity tends to cos(27d1).

For a given holonomy and a fixed period in time  (which we will henceforth fix to
1), solutions depend on the following parameters: the position of the center of mass of
the caloron Xcwm, the size parameter p and an SU(2) colour orientation. For medium and
large values of p (compared with the time-period 3 = 1) the action density of the solution
appears as a superposition of two lumps, named constituent monopoles in ref. [[l. The



distance between the lumps approaches mp? and the total masses M, = 4wm,/g? are given
by the holonomy as follows:

mi = 471'(51 N mo = 47‘(’52 =21 — mi (2.13)

The shapes of these monopoles tend, as the distance is increased, to that of BPS monopoles,
having a non-abelian core which is exponentially localised and an abelian powerlike fall-off
at large distances.

One can construct the caloron solution by an infinite dimensional generalisation of the
ADHM construction [fl] (strictly speaking a Nahm [BJ] transform). This is the procedure
that we will follow here, allowing us to extend the ADHM formulas for the adjoint modes
to this case. If we regard the caloron solution as a solution in R* which is periodic in
time, the topological charge would now become infinite. Thus, ¢ and A become an infinite
dimensional vector and matrix respectively. The discrete index can be interpreted as the
Fourier mode of a periodic function of one variable z (with period 1). Thus ¢(z) is a
distribution and A a linear operator in this space. One can use translations, rotations and
gauge transformations to bring ¢(z) and A to the form M-

q(z) = p(6(z — 61) P+ +0(z + 61)P-) (2.14)
e 1 d A .2 o
A(z) = s iX Tx1(z) —iX Txa(2) (2.15)
where Py = H;T?’ , 0(2) are periodic delta functions and y,(z) are characteristic functions of

the intervals I, (taking the value 1 in the interval and zero elsewhere). The intervals I =
[—01,01] and Iy = [61,1— 1] denote complementary regions of length m,/(m1 +mse) within
one period in z. Finally, the vectors X can be interpreted as denoting the spatial locations
of the constituent monopoles. We have used the translation and rotation symmetry to place
them along the z axis and to locate their center of mass at the origin (ml)?l +myX? = 0).
In addition, their separation is fixed by p:

X2 - X' =7p%0,0,1) (2.16)

This information allows to determine X% uniquely. As mentioned all Q = 1 caloron so-
lutions can be obtained from these formulas by applying euclidean and gauge transfor-
mations. Furthermore, one can easily restore an arbitrary time period by multiplying all
length parameters by § (and masses by 1/0).

Within the Nahm transform philosophy, the quantity A can be identified with the
covariant derivative (divided by 27i) of an abelian gauge potential A\ﬂ over a 4-d torus
which has been shrunk to a circle, whose coordinate is labelled by z. The remaining
(spatial) coordinates have dropped as arguments, but the vector potential field still keeps
the vector index. In our case only the third component is non-zero, and is given by

Ay = —2m(X1x1(2) + Xxa(2)) (2.17)

This implies that the corresponding magnetic field vanishes and the electric field is a delta
function over z = +4d;.



In conclusion, to obtain the expression for the adjoint zero modes for our case, one
has only to substitute the expression of the variations g and §A in the formula eq. (B.9).
The variations are associated to the parameters of which the caloron field depends. On
one hand we have the coordinates of the center of mass of the constituent monopoles. This
will give rise to the supersymmetric modes, which are always associated to translational
symmetry. The corresponding variations can be obtained straightforwardly, giving 6(9¢ =
0and 6©A=1. Substituting into the formula one obtains (% 4y = 0 and

s 4, = E (2.18)

where E; are the components of the electric (or magnetic) field strengths of the caloron. As
anticipated this is the expression of the supersymmetric mode, having density proportional
to the action density of the caloron field.

The index theorem suggests that we should find 4 independent solutions (2N@). As
mentioned previously they come in CP-pairs. Each pair is associated to 4 real variations
of the Nahm data. This is exemplified with the supersymmetric modes, for which there is
a single pair associated to the 4d center of mass variations. Therefore, one must still find a
new independent CP-pair. As we will see, one can obtain one such mode by varying with
respect to the parameter p. Acting with the operator pdip on our expressions of ¢ and ﬁ,

we obtain 61)¢ = ¢ and
WA = —2iX2msx1(2) — 2iX273x2(2) = ip*T3(max1(z) — mix2(2)) (2.19)

For these variations ¢(§ (l)q)T — (5(1)q)qT vanishes, and eq. (2.12) amounts to the requirement
that the Nahm-dual field gu(z) satisfies the covariant background gauge condition too.
This follows trivially, since 5(1);{0 = 0. In summary, substitution of these variations into
eq. (B-9) provides a self-dual deformation in the covariant background Lorentz gauge. The
same applies to the supersymmetric zero-mode for which 6@ ¢ = 0 and 5(0)20 is constant.
To give a simple expression of the result it is convenient to separate the contribution
of §q, present only in the non-supersymmetric zero-mode case from the other one. Further-
more, we point out that the former becomes proportional to the caloron vector potential
itself: )
L 40w+ he e = 2 A (2.20)
27 H P

To give an expression of the second term one must realize that both u and w can be
written as the sum of two contributions, u = ), u, and w = ), w,, such that each piece
is proportional to the characteristic function x,(z) of each of the intervals. Finally, we can
collect the formula for both sets of modes as follows

0OA, = E,+E? (2.21)

2
0 Ay = —Z A+ o (maEl — maE) (2.22)

where ng’f‘ is ‘t Hooft symbol and we have defined

Bl =

«

Ul 540w, + . c. (2.23)

NN
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Figure 1: Supersymmetric (left) and non-supersymmetric (right) zero-mode densities for 6; = 0.2
and p = 0.1. Monopoles are localised on the z axis at x = y = ¢t = 0. Densities are plotted in the
x — z plane keeping ¢t = 0 and y = 0. The lengths of the x and z axes are scaled by 4.6p.

which by virtue of eq. (.2I)) can be regarded as the contribution of constituent monopole
a to the caloron field strength. This formula is quite appealing since it suggests that the
two modes are simply given by different linear combinations of the field produced by each
constituent monopole. This is modified by the presence of the ng’/‘ in the expression for
the non-supersymmetric mode. Notice, however, that each mode belongs to a complex two
dimensional space of modes generated by the two elements of a CP-pair. In particular, this
means that one can transform the gauge variations as follows

&' Ag = 15"dA, (2.24)

for any value of a. Using this and allowing for a different normalisation one can recast the
formula for the non-supersymmetric mode as follows:

1
7 Fp?

§WA, =—n Ao + (maE), —myE?) /21 (2.25)

In the appendix we compute the expressions for the functions u,, w, and with them
we compute E?. The final expression eq. (A.39) is a sum of two terms. The first one is
given by the field produced by a BPS monopole, of mass M,, located at the position of
the corresponding constituent monopole, gauge rotated and weighted by an x-dependent
scalar function A\,(z). In the next section we will analyse how these functions behave in
different limits and reduce to the formulas for monopoles and instantons.

All of the expressions are dependent on a 2 x 2 matrix which is additive with respect
to the contributions of the intervening monopoles. Its inverse, labelled V', appears in the
formulas and provides the main effect of one constituent monopole over the other.

As illustration of the properties of the zero modes we show in figures [l-fj the densities
of both supersymmetric and non supersymmetric zero modes for §; = 0.2 and several values
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Figure 2: The same as in figure [l| but for p = 0.3.
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Figure 3: The same as in figure m but for p =0.8.

of the scale parameter p. Densities are plotted in the x — z plane keeping t = 0 and y = 0.
For small p the supersymmetric zero-mode reproduces the characteristic single-instanton
shape. As p increases the caloron dissociates into two constituent monopoles which tend,
at large p, to two BPS monopoles. The non-supersymmetric mode has, at small p, a
symmetric ring structure also characteristic of a normal instanton, going through zero at
the center of mass of the caloron. The ring gets distorted as p increases and dissociates
for even larger p into the two constituent BPS monopoles. This behaviour matches the
one obtained analytically in the p — 0 and p — oo limits, which are described in the next
section.



3. Properties of the solutions

In this section, we will clarify the spatial structure of the modes by studying their be-
haviour in certain limits. Since calorons interpolate between monopoles, instantons and
HS calorons as one moves along the moduli space, a similar phenomenon is expected for
the corresponding gluino zero-modes.

3.1 p — o0 limit

There are several length scales involved in this problem (m;!, the time period and the
distance among constituents 7p?), so it is important to clarify precisely in what regime we
are thinking of. We will consider the simplest situation in which mp? is much larger than
all other length scales in the problem. In addition, we will focus on the behaviour close to
one of the monopoles 7 << mp?. Then, for the other monopole one has 7y ~ mp>.

All our expressions are built in terms of V and U, (see egs. (A:2§) and (A29) in the

appendix), so we will first analyse the behaviour of these quantities as a function of p.

The quantity Us behaves for large distances as ro/27 — p?/2. Thus, V becomes order
p~2. In order to compute the leading behaviour of F in this limit one has to keep the first
correction as well. This is obtained by expanding

ro = ||FL — 7p?k|| = mp® — (w5 — X3) + ... (3.1)
In this way we arrive at

e — X1
%(1 - %wl o) %X?’))) (3.2)

and from here we see that F is order p?. From these results we conclude that W (eq. (A.27))
1

V:

is order p~*, and OW of order p~2 while the derivatives of U, are order 1. Then it is easy to
see that, of the different terms contributing to the zero-modes, only the term proportional
to the a = 1 BPS monopole field is leading order. The latter is easily computable by
realizing that the quantity inside parenthesis in eq. ([A-37) now becomes precisely 2/(Fp?).
This leads to Ay = 1 and Ao = 0. The conclusion is that for large separations and close to
the center of the ath constituent monopole, the quantity E is, after a performing a gauge

rotation, simply given by the electric field of a single BPS monopole:
EBPS(Z — X% my,) (3.3)

Now we recall that the integral of the BPS monopole electric field square over space equals
4mm. We reproduce, in this limit, the well-known fact that the contribution of each con-
stituent monopole to the energy will then become, at sufficiently large separation, propor-
tional to my and mo respectively. Adding the two contributions to get the supersymmetric
mode gives a total integral of 872 as expected for the caloron.

Considering now the non-supersymmetric mode and taking into account that in
eq. (R:29) the first term is subleading in this limit, we conclude that the contribution
of the ath constituent monopole to the total energy is given by 4mp*m2m32/m,. This is
consistent with the known result [l about the integrated densities which appears when
computing the metric of the caloron moduli space.



3.2 p — 0 limit

To be precise the limit is defined by the requirement that m,r, << 1 and the distances r;
are of order p. This implies that in the first approximation one can neglect the separation
between the constituent monopoles (mp? << 7;). As usual we will start by computing U,
in this limit:

2
Mo ¢,
v (CE ) (3.4
€al0 pr—
where 22 = :Ug + 72 is the square of the 4d euclidean distance to the origin. Notice that

the 11 element of this matrix is negligible with respect to the 22 element, but has to be
kept to be able to compute the inverse matrix. From here we conclude that to leading
order V = 2P /(2 + p?), where Py is the matrix (projector) whose only non-vanishing
component is 11, equal to 1. This projector appears in all our formulas and simplifies
all vectors and matrices into single component. Using this it is easy to estimate the
contribution of both terms in the expression for Ej, eq. (A-39). The second term turns
out to be subleading with respect to the first one. Using 0(U; + Us) = & the second term
in this equation gives:

imyg p2 10,

21 (22 + p2)2 a2

+ h.c. (3.5)

which is proportional (m,/(27)) to the gauge field of an instanton in a certain gauge.
Hence, adding the a = 1 and a = 2 contributions, we conclude that the supersymmetric
zero mode reduces in this limit to the one of an BRST instanton. Notice however that the
combination of eq. (B.§) entering in the non-supersymmetric zero mode vanishes.

For the case of the non-supersymmetric zero mode the leading term turns out to be
the one proportional to the vector potential. For it we obtain

2
% . —im@fn +hec. (3.6)

Notice that this is precisely proportional to the well-known non-supersymmetric adjoint
mode for the BRST instanton.

In summary, in this limit both adjoint modes tend to the corresponding ones for a
BRST instanton.

4. Conclusions

In this paper we have derived, following the ADHM formalism, the analytic expressions
for the gluino zero-modes of the Dirac operator in the background of topological charge 1
calorons with non-trivial holonomy. These gluino zero-modes are relevant for semiclassical
studies of 4D Super-symmetric Yang-Mills theories. They can also turn out to be useful
for analysing the structure and topological content of the QCD vacuum. In particular they
can give a handle in the identification of constituent monopoles inside instantons, a subject
that has recently received much attention [[J)-[J].

For () = 1 there are four linearly independent zero modes which come in pairs related
by Euclidean CP transformations. Two of them correspond to the super-symmetric zero

,10,



modes and share the property that their density exactly reproduces the action density of the
caloron. The other two modes show a quite distinct behaviour. For small scale parameter
p they have the same ring structure as for trivial calorons or instantons as exhibited in
figure [|. As we increase p the non-supersymmetric zero-mode rings get distorted (figure ).
For much larger p both zero mode densities dissociate into two structures having the density
profiles of BPS monopoles of masses M; and M, (figure [J). For the supersymmetric case
the integrated contribution of each monopole to the energy is proportional to its mass.
However, for the non supersymmetric modes these contributions are inversely proportional
to their masses. By taking appropriate linear combinations it is possible to construct zero
modes which, for intermediate to large scale parameters, single out only one of the two
constituent monopoles.

All these features can certainly help in the identification of constituent monopoles
in lattice generated ensembles. This identification has been up to now performed solely
on the basis of the action density and the properties of fundamental zero-modes [[[3, R0,
R1], becoming particularly complicated for low temperatures [PJ]. Adjoint zero modes
provide an additional tool for this analysis. The supersymmetric zero mode density gives
an estimate of the action density of the gauge field itself which is less sensitive to ultraviolet
divergences.

Our present results can be extended to the case of SU(N) Q=1 calorons and to higher
charge calorons. Furthermore, it is also possible to use our techniques to construct gluino
zero-modes which are anti-periodic in time, directly relevant for finite temperature N' =1

supersymmetry [B].
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A. Analytic calculation of £}

In this appendix we will present the derivation of the analytic formulas of the zero modes
given in the text. All interesting quantities are expressed in terms of the functions u
and w (see eqs. (R.11)—(R.10)), and their integrals over z. These functions belong to a 4
dimensional vector space over the field of quaternions. The space is the direct sum of the
spaces of functions annihilated (up to delta functions) by the operator M=A-37 and its
adjoint. To obtain a basis of this space one must consider the functions

U (2,2,6) = x(—06,8) 277> (A1)
VO (z,2,0) = x(—0,0) €2 (A.2)

Il
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They are to be taken as periodic over z ( and xy) with unit period. The function x(—4,d)
is the characteristic function over the interval. In terms of these functions we can compute
the 4 elements of the basis of the space:

Mg

U =0H (2 - 7% 2 — X, =

) (A.3)

The index a takes two values (1 and 2), which can be thought as labelling the two con-

stituent monopoles. Indeed, X stands for the location and m, = 4md, for the mass (for

g% = 4m) of each of the monopoles. The remaining coefficients are Z! = 0 and Z? = %

To derive the formulas one needs to know how the operators M and M act on them.
These are given by

MNE = (] +ie)5(= — ) + (¢ — ie§)o(z + 1)) (A.4)
MW, = T +ie8)6(z — b1) + (& — )iz + o) (A.5)
(M — MYU# = 2i(z — X7 Uk (A.6)

The quantities e{ and e§ are simple quaternionic functions of x defined by the value of the
basis functions at the extreme of the interval:

m?i Ut (2) = ieq(ef +ied) = (e +iey) (A.7)
zZ— 1
where €; = —1 and e3 = 1, and we have introduced new quaternionic quantities e/, ef". In

all expressions a bar over a quaternion denotes its adjoint.

All of the necessary functions of z entering the caloron formulas can be expressed in
terms of these functions. From the equations that they satisfy (eq. (R.1]), (.10)) we can
easily deduce the general structure

= ug=» (UFA,) (A.8)

a

w=Y (TFDS + v, D) (A.9)

a

where the coefficients (4, Déi), etc) are quaternionic functions of space-time.

For all the necessary calculations of adjoint modes one also needs the general form of

Ow:
Ow =Y (4mi(z — 2*)U DS + U S + w787 (A.10)

Finally, we need to know the integrals of the basis functions over z. We will need:

It = \II-FT— pE — Ma  roo  + a o A1l
@ /dZ b Oa¥y 5ab ot (P:I: g(mara) + PZF ) ( )
and

T . +i = + mc% gl(mara) ao(;n

Ia = 4 dZZ\I/b Ua\Pa = _ﬁ m 7)+ (Zna) (A12)
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where we have introduced the quaternions
aa 1 —« A —ap
Pi = 5(0’ + NgO na) (A13)

The symbol 7, stands for a hermitian unitary traceless matrix defined through the decom-
position
(T — XF = r4fa (A.14)

where r, is the distance to the corresponding constituent monopole. The expressions also
contain the function g:

g(u) = u/sinh(u) (A.15)

and its derivatives evaluated at the product of the mass and the distance.

With the previous expressions one can compute the caloron vector potential as well as
the adjoint modes, once the coefficients Déi) and Sa(ti) are known. These can be deduced
from the equations that define u and w (egs. (R.11)) and (R.10)), but now the whole analytic

structure reduces to a finite-dimensional linear problem in quaternions. Essentially, this

follows from the matching at the edges of the intervals z = +4;. For example, the absence
of derivatives of delta functions in the equation for w, implies that this function must be
continuous at z = +4d;. If we note w(d;) = Wy +iWs, then we can compute the coefficients
of w and w in terms of W; by the continuity equations:

W = é&*DH) + D) (A.16)
OW = —4nd,e? D) + &5+ 4 ¢ 5l=) (A.17)
The equation has been rewritten as a vector equation in terms of two (quaternionic) com-

ponent column vectors W, €’®, ... . Notice that each equation is valid for both values of
a. With ordinary vector space techniques one can solve for the coefficients:

D) = MQGTW (A.18)
MaTq

D) = ~iag(MaTa) aty, (A.19)
MmqTq

500 = Ma9(mare) oty 7 COS(MaTa) oty (A.20)
MaTa sinh®(mgry)

Sc(;) - Méﬂéw + #eﬂw (A.21)
MaTa sinh®(mqrq)

(+)

The coefficient A, appearing in the expansion of u can be related to D'’ by the equation
Mw = u/F. Hence, we get
A, = 2irgFgD) (A.22)

a

Combining all the previous formulas we arrive at

U 500wy = WHLaaW + WTLe5,0W (A.23)
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where

2Fmgag(megr,) g (mare) — 1 g’ (Mma7a)
ro = 27 Mad\Mava) o (9 \Mala) = 2 paa ac ) of A.24
ac 71' ° ! 2m2r2 . 2mar, P=r) e (824
and Py )
~  —iFg(mgr . _
L= e eae (—glmara)él + ) (4.25)

Up to this point all expressions seem to depend only on a single distance r,. The
mixing among the two coordinates and the relation between the constituent monopoles is
hidden in the expression of W. The main equation satisfied by W is

F 1
Bsgmara) iy 2 ( ) (A.26)
T Mg 2

—173

From here one can solve for W. It is very easy to realise that W must be a linear combina-
tion of the quaternion i3 and unity. This follows from the equation w = R~ !¢. Since ¢ is a
combination of these two quaternions and R commutes with quaternions (and is therefore
real), this property extends to W. In summary, we have

p 1
W=V A27
2 ( —iT3 ) ( )
where V is a real 2 x 2 matrix, whose inverse is sum of contributions from the two constituent
monopoles
2
-1_P
vii=t Za: U, (A.28)
with
U, — g(marq) cosh(marfl) — cos(mqazg) €q SIn(mqxo) (A.29)
2mmyg €q Sin(Mgex0) cosh(mgry) + cos(mgxo)

An interesting relation between U and the vectors e® is given by

. 0
U, = L9(mara) b 6;;“ (-m ”S“) (A.30)
a

T Mg

Now we have all the ingredients to calculate all the relevant quantities concerning
calorons, including the adjoint zero-modes. For example, we can obtain the scalar function

F

1
F = A.31
1—p2Tr(V)/2 ( )
For the vector potential, we can write the following expression:
—iF 4
Ay = 5 W'5,0(Ur +Uz) W + h. c. (A.32)

Finally, we proceed to the computation of the basic quantity which enters into the
expression of the zero modes E%(x). This is obtained from eq. (A.23) after multiplying by
i and taking the hermitian part. The result is the sum of two terms. The first one has a

- 14 —



very transparent interpretation. To show this, one must first realize that the traceless part
(or hermitian part) of the quantity inside parenthesis in eq. (A.24) is precisely EPTS(x —
X% mg)/m2, where EBPS(x — X% m,) is the gauge field of a BPS monopole of mass M,

centered at one of the constituent monopoles. This is sandwiched between the quaternion
Q. = e®'W and its adjoint. If we write

Qa = eTW = Q|0 (A.33)

where €2, is a unitary matrix and we define

22Fga

)\a = |Qa| (A34)
™y
then we conclude that the first term in E2(z) is given by
AaQEBPS (2 — X mg)Qf (A.35)

which is just the field of a BPS monopole, gauge rotated and weighted by A,. The weight
factors are positive and satisfy:

1
Za:)\a =(1-%) (A.36)

An explicit formula to compute them in terms of the matrix V is

Ay = FT'OQ (Tr(VUav) + ;_;(mg — XI)(Tr*(V) — Tr(V2))> (A.37)

The second piece contributing to eq. ) is also simplified if one realizes that

L, =—FoU, (A.38)
Hence, one reaches to the following simple formula for the quantity E, representing the
contribution of constituent monopole a to the field strength
F 7 - A
po = F90ara) ot apees xa et~ tan s aw e, (A39)
» Mg # 2 "

The time-like component (p = 0) of the first term vanishes. For the second term we have
Eé = —Eg. This is easily concluded by realizing that

OW = VU, + U)W (A.40)

References

[1] T.C. Kraan and P. van Baal, Ezact t-duality between calorons and Taub-NUT spaces,

[ Lett. B 428 (1998) 26§ [hep-th/9802049]; Periodic instantons with non-trivial holonomy,
[Nucl. Phys. B 533 (1998) 627 [Eep—th/980516§.

[2] T.C. Kraan and P. van Baal, Monopole constituents inside SU(N) calorons, [Phys. Lett. B
[ 435 (1998) 389 [hep-th/9806034].

,15,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C268
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C268
http://arxiv.org/abs/hep-th/9802049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB533%2C627
http://arxiv.org/abs/hep-th/9805168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB435%2C389
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB435%2C389
http://arxiv.org/abs/hep-th/9806034

K.-M. Lee, Instantons and magnetic monopoles on R? x S1 with arbitrary simple gauge

K.-M. Lee and C.-H. Lu, SU(2) calorons and magnetic monopoles, |Phys. Rev. D 58 (1998

F. Bruckmann and P. van Baal, Multi-caloron solutions, |[Nucl. Phys. B 645 (2002) 105

F. Bruckmann, D. Nogradi and P. van Baal, Higher charge calorons with non-trivial

B.J. Harrington and H.K. Shepard, Periodic euclidean solutions and the finite temperature
Yang-Mills gas, |Phys. Rev. D 17 (1978) 2129; Thermodynamics of the Yang-Mills gas,

P. Rossi, Ezact results in the theory of nonabelian magnetic monopoles, |Phys. Rept. 86

A.A. Belavin, V.A. Fateev, A.S. Schwarz and Y.S. Tyupkin, Quantum fluctuations of

C.G. Callan Jr., R.F. Dashen and D.J. Gross, Toward a theory of the strong interactions,

M. Garcia Perez, A. Gonzalez-Arroyo and B. Soderberg, Minimum action solutions for SU(2)
gauge theory on the torus with nonorthogonal twist, |[Phys. Lett. B 235 (1990) 117
M. Garcia Perez and A. Gonzalez-Arroyo, Numerical study of Yang-Mills classical solutions

G. 't Hooft, A property of electric and magnetic flux in nonabelian gauge theories,

M. Garcia Perez, A. Gonzalez-Arroyo and P. Martinez, From perturbation theory to
confinement: how the string tension s built up, |[Nucl. Phys. 34 (Proc. Suppl.) (1994) 228

A. Gonzalez-Arroyo and P. Martinez, Investigating Yang-Mills theory and confinement as a
function of the spatial volume, [Nucl. Phys. B 459 (1996) 337 [hep-lat/9507001l;
A. Gonzalez-Arroyo, P. Martinez and A. Montero, Gauge invariant structures and

A. Gonzalez-Arroyo and A. Montero, Do classical configurations produce confinement?,

C. Gattringer, Calorons, instantons and constituent monopoles in SU(3) lattice gauge theory,

C. Gattringer and S. Schaefer, New findings for topological excitations in SU(3) lattice gauge

3]
groups, |Phys. Lett. B 426 (1998) 323 [hep-th/9802012.
[4]
025011 [hep-th/9802108];
[5]
[hep-th/0209010;
holonomy, [Nucl. Phys. B 698 (2004) 233 [hep—th/0404210)].
[6]
Rev. D 18 (1978) 2990.
[7]
(1982) 317,
8]
multi-instanton solutions, |Phys. Lett. B 83 (1979) 317].
[9]
|Phys. Rev. D 17 (1978) 2717
[10]
on the twisted torus, |J. Phys. A 26 (1993) 2667 [hep-1lat/9206016.
[11]
Phys. B 153 (1979) 141
[12]
[hep-1at/9312064];
confinement, [Phys. Lett. B 359 (1995) 159 [hep-1at/9507004];
Lett. B 387 (1996) 829 [hep-th/9604017)].
[13]
[Phys. Rev. D 67 (2003) 034507 [pep-1at/0210001];
theory, [Nucl. Phys. B 654 (2003) 3( [hep-1at/0212029.
[14]

E.-M. Ilgenfritz, B.V. Martemyanov, M. Muller-Preussker, S. Shcheredin and A.I. Veselov,
On the topological content of SU(2) gauge fields below T,, [Phys. Rev. D 66 (2002) 074503
[hep-1at/0206004];

E.M. Tlgenfritz, M. Muller-Preussker and D. Peschka, Calorons in SU(3) lattice gauge theory,
[Phys. Rev. D 71 (2005) 116003 [hep-lat/0503020;

E.M. Ilgenfritz, B.V. Martemyanov, M. Muller-Preussker and A.I. Veselov, The monopole
content of topological clusters: have KVB calorons been found?, |Phys. Rev. D 71 (2005)

034505 [hep-1at/0412024];

,16,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB426%2C323
http://arxiv.org/abs/hep-th/9802012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C025011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C025011
http://arxiv.org/abs/hep-th/9802108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB645%2C105
http://arxiv.org/abs/hep-th/0209010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB698%2C233
http://arxiv.org/abs/hep-th/0404210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD17%2C2122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD18%2C2990
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD18%2C2990
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C86%2C317
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C86%2C317
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB83%2C317
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD17%2C2717
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB235%2C117
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA26%2C2667
http://arxiv.org/abs/hep-lat/9206016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB153%2C141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB153%2C141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C34%2C228
http://arxiv.org/abs/hep-lat/9312066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB459%2C337
http://arxiv.org/abs/hep-lat/9507001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB359%2C159
http://arxiv.org/abs/hep-lat/9507006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB387%2C823
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB387%2C823
http://arxiv.org/abs/hep-th/9604017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C034507
http://arxiv.org/abs/hep-lat/0210001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB654%2C30
http://arxiv.org/abs/hep-lat/0212029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C074503
http://arxiv.org/abs/hep-lat/0206004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C116003
http://arxiv.org/abs/hep-lat/0503020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C034505
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C034505
http://arxiv.org/abs/hep-lat/0412028

E.M. Tlgenfritz, B.V. Martemyanov, M. Muller-Preussker and A.I. Veselov, Calorons and
monopoles from smeared SU(2) lattice fields at non-zero temperature, |Phys. Rev. D 73 (2006 )

094509 [hep-1at/0602004].

[15]

[16]

[17]

D. Diakonov, N. Gromov, V. Petrov and S. Slizovskiy, Quantum weights of dyons and of
instantons with non-trivial holonomy, [Phys. Rev. D 70 (2004) 036003 [hep-th/0404047].

N.M. Davies, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Gluino condensate and magnetic
monopoles in supersymmetric gluodynamics, [Nucl. Phys. B 559 (1999) 124
[hep-th/9905015).

D. Diakonov and V. Petrov, Gluino condensate and long-range fields, [Phys. Rev. D 67 (2003)

105007

[18]

[19]

[20]

[21]

M. Garcia Perez, A. Gonzalez-Arroyo, C. Pena and P. van Baal, Weyl-Dirac zero-mode for

calorons, |Phys. Rev. D 60 (1999) 031901 [hep-th/9905016]; Calorons on the lattice: a new
perspective, THEP 06 (1999) 001 [hep-1at/990302].

M.N. Chernodub, T.C. Kraan and P. van Baal, Ezact fermion zero-mode for the new
calorons, [Nucl. Phys. 83 (Proc. Suppl.) (2000) 556 [hep-lat/9907001];

F. Bruckmann, D. Nogradi and P. van Baal, Constituent monopoles through the eyes of
fermion zero-modes, |Nucl. Phys. B 666 (2003) 197 [hep-th/0305063].

C. Gattringer and R. Pullirsch, Topological lumps and dirac zero modes in SU(3) lattice
gauge theory on the torus, [Phys. Rev. D 69 (2004) 09451(| [hep-1at/0402008];

C. Gattringer and S. Solbrig, Dependence of dirac eigenmodes on boundary conditions for
SU(2) lattice gauge theory, Nucl. Phys. 152 (Proc. Suppl.) (2006) 284 [hep-1at/0410040].

E.-M. Ilgenfritz, B.V. Martemyanov, M. Muller-Preussker and A.I. Veselov, Recombination of
dyons into calorons in SU(2) lattice fields at low temperatures, [Phys. Rev. D 69 (2004)

114505 [hep-1at/040201d].

22]

[23]

F. Bruckmann, E.M. Ilgenfritz, B.V. Martemyanov and P. van Baal, Probing for instanton
quarks with e-cooling, [Phys. Rev. D 70 (2004) 105013 [hep-1at/0408004].

E. Cohen and C. Gomez, Chiral symmetry breaking in supersymmetric Yang-Mills,

Rev. Lett. 52 (1984) 231.

[24]

[25]

[26]

[27]

28]

S.J. Hands and M. Teper, On the value and origin of the chiral condensate in quenched
SU(2) lattice gauge theory, Nucl. Phys. B 347 (1990) 819.

I. Horvath et al., Local chirality of low-lying dirac eigenmodes and the instanton liquid model,

[Phys. Rev. D 66 (2002) 034501f [hep-1at/0201008§].

C. Gattringer, M. Gockeler, C.B. Lang, P.E.L. Rakow and A. Schafer, Comparing lattice dirac
operators in smooth instanton backgrounds, [Phys. Lett. B 522 (2001) 194 [hep-1at/0108001]].

T.A. DeGrand and A. Hasenfratz, Density peaks and chiral peaks of fermion eigenmodes in
QCD, |Phys. Rev. D 65 (2002) 014503 [hep-1at/0103009].

H. Neuberger, A practical implementation of the overlap-Dirac operator, [Phys. Rev. Lett. 81|

(1998) 406( [hep-1at/9806028]; More about exactly massless quarks on the lattice,

Lett. B 427 (1998) 353 [hep-1at/9801031]; Fxactly massless quarks on the lattice,

Lett. B 417 (1998) 141 [hep-1at/9707024].

A. Gonzalez-Arroyo and R. Kirchner, Adjoint modes as probes of gauge field structure,

01 (2006) 029 [hep-1at/0507034).

,17,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C094509
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C094509
http://arxiv.org/abs/hep-lat/0602002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C036003
http://arxiv.org/abs/hep-th/0404042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB559%2C123
http://arxiv.org/abs/hep-th/9905015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C105007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C105007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C031901
http://arxiv.org/abs/hep-th/9905016
http://jhep.sissa.it/stdsearch?paper=06%281999%29001
http://arxiv.org/abs/hep-lat/9903022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C83%2C556
http://arxiv.org/abs/hep-lat/9907001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB666%2C197
http://arxiv.org/abs/hep-th/0305063
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C094510
http://arxiv.org/abs/hep-lat/0402008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C152%2C284
http://arxiv.org/abs/hep-lat/0410040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C114505
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C114505
http://arxiv.org/abs/hep-lat/0402010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C105013
http://arxiv.org/abs/hep-lat/0408004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C52%2C237
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C52%2C237
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB347%2C819
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C034501
http://arxiv.org/abs/hep-lat/0201008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB522%2C194
http://arxiv.org/abs/hep-lat/0108001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C014503
http://arxiv.org/abs/hep-lat/0103002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C81%2C4060
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C81%2C4060
http://arxiv.org/abs/hep-lat/9806025
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB427%2C353
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB427%2C353
http://arxiv.org/abs/hep-lat/9801031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB417%2C141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB417%2C141
http://arxiv.org/abs/hep-lat/9707022
http://jhep.sissa.it/stdsearch?paper=01%282006%29029
http://jhep.sissa.it/stdsearch?paper=01%282006%29029
http://arxiv.org/abs/hep-lat/0507036

[30] R. Jackiw and C. Rebbi, Spinor analysis of Yang-Mills theory, [Phys. Rev. D 16 (1977) 1052;
S. Chadha, A. D’Adda, P. Di Vecchia and F. Nicodemi, Fermions in the background
pseudoparticle field in an O(5) formulation, [Phys. Lett. B 67 (1977) 103.

[31] MLF. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of instantons,

Lett. A 65 (1978) 18§.

[32] E. Corrigan, P. Goddard and S. Templeton, Instanton Green functions and tensor products,
[Nucl. Phys. B 151 (1979) 93,
H. Osborn, Semiclassical functional integrals for selfdual gauge fields, |Ann. Phys. (NY) 135

(1981) 379; Calculation of multi-instanton determinants, [Nucl. Phys. B 159 (1979) 491.

[33] W. Nahm, A simple formalism for the BPS monopole, |Phys. Lett. B 90 (1980) 413
All selfdual multi-monopoles for arbitrary gauge groups, CERN-TH-3172, presented at
Int. Summer Inst. on Theoretical Physics, Freiburg, West Germany, Aug 31 - Sep 11, 1981.

[34] T.C. Kraan, Instantons, monopoles and toric hyperkihler manifolds, |Commun. Math. Phys)

212 (2000) 503 [hep-th/9811179].

[35] F. Bruckmann, M. Garcia Pérez and A. Gonzdlez-Arroyo, in preparation.

,18,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD16%2C1052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB67%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CA65%2C185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CA65%2C185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB151%2C93
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C135%2C373
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C135%2C373
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB159%2C497
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB90%2C413
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C212%2C503
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C212%2C503
http://arxiv.org/abs/hep-th/9811179

